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We use the Friedel sum rule �FSR� to discuss the accuracy of exact and approximated Kohn-Sham density-
functional theory for the calculation of the electrical conductance. For a two-level molecular junction model we
prove that if the Kohn-Sham Hamiltonian reproduces the density of the interacting system calculated in some
approximation then it also reproduces the conductance at the same level of approximation. This result is argued
to be general for single-channel molecular conductors and is confirmed by means of the exchange-only and
GW approximations. The former is found to underestimate the GW conductance. Using the FSR we show how
small errors in the description of the density can lead to relatively large errors in the conductance.
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I. INTRODUCTION

The theoretical design of molecular conductors with tai-
lored transport properties requires a quantum many-body
theory able to accurately predict the electronic structure and
associated electrical conductance.

A standard approach to calculate theoretical estimates of
electrical conductances in molecular conductors relies on
combining static Kohn-Sham density-functional theory �KS-
DFT� �Ref. 1� with the so-called nonequilibrium Green’s-
function �NEGF� method2,3 and calculating the current by
means of the Meir-Wingreen formula.4

KS-DFT has been and is an extremely successful method
for the calculation of ground-state properties: electron den-
sity, ionization potential, and total energy are all given ex-
actly by KS-DFT for any many-electron system, provided
that the exact KS exchange-correlation �XC� potential is
used. Yet the use of KS-DFT �exact or approximated� for
calculating conductances is often questioned since KS orbit-
als lack rigorous physical interpretation.5

KS-DFT conductances typically turn out to be larger than
their experimental counterparts by a factor that depends both
on the calculation and on the experiment. In earlier
comparisons6 this factor was �102 while in more recent
comparisons order-of-magnitude agreement between theory
and experiment has been claimed.7 There are various uncer-
tainties affecting the experimental conductance values: para-
sitic resistances, uncontrolled molecule-electrode coupling,
and polarization effects associated with nearby gates and
electrodes can be important and vary from experiment to
experiment.8–10

There are also uncertainties in the theoretical results. Sai
et al.11 and Di Ventra and Vignale12 �see also Ref. 13� pro-
pose dynamical XC contributions to the electrical resistance
within time-dependent current-density-functional theory, that
are beyond any static functional �exact or approximate�. Ac-
cording to Refs. 11 and 12 this dynamical XC effect might
be the dominant contribution to the resistance in systems
where there are large density gradients and the viscosity of
the underlying electron liquid is also large. In contrast, Jung
et al.14 argue that a more accurate evaluation of the correc-

tion proposed in Ref. 11 reduces its effect down to a few
percent. Therefore the size of these corrections remains un-
known.

Self-interaction errors present in common approximations
to KS-DFT are known to unphysically alter the conductance
by discharging the molecular central region for a given value
of the gate potential, as clearly demonstrated by Toher et
al.15 A self-interaction-free approach is thus essential to ob-
tain the right alignment between single-particle levels and
the chemical potential of the electrodes and therefore to im-
prove the results of KS-DFT conductance estimates.

The accuracy of exact KS-DFT has been addressed in
model systems by Schmitteckert and Evers,16 who compared
conductances obtained numerically from a density-matrix
renormalization-group �DMRG� calculation to those ob-
tained from the “exact” KS-DFT potential that reproduces
the DMRG electron density. The calculated DMRG and ex-
act KS-DFT conductances are in very good agreement, sug-
gesting that dynamical XC effects are small.

Intuition also gives rise to contradictory scenarios when it
comes to the problem of the accuracy of the conductances
calculated using KS-DFT. On the one hand we know that
there are large differences between the interacting and KS
spectral functions, which suggests the possibility of large
discrepancies between the exact and KS conductances, even
within exact KS-DFT. On the other hand, our idea of the
strength of a scatterer is related to the magnitude of the dis-
turbance it causes on the electron density, relative to the
system without scatterer.17–19 This disturbance is described
exactly in exact KS-DFT and therefore one could also expect
the differences between the interacting and Kohn-Sham con-
ductances to be small.

In this paper we address the accuracy of exact KS-DFT.
We give theoretical arguments as to when and why we ex-
pect differences between interacting and KS conductances to
be small. Based on the Friedel sum rule �FSR�,17–19 we iden-
tify physical systems of interacting electrons where KS-DFT
yields the exact conductance. As a toy model of a correlated
molecular junction we consider a two-level model. We cal-
culate the electron density and conductance of the two-level
model in the spin-compensated GW approximation, which is
known to give accurate gaps in semiconductors20 and has
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been implemented recently by several authors to study simi-
lar systems in and out of equilibrium.21–24 We build single-
particle KS Hamiltonians optimized to reproduce the GW
electronic density �GWKS�, calculating also the exchange-
only KS Hamiltonian �XXKS�. By means of the Meir-
Wingreen formula4 we calculate and compare the GW,
GWKS, and XXKS conductances for various interaction-
strength and molecule-lead coupling parameters. We find that
the calculated GW and GWKS conductances are in excellent
agreement while significantly different from the XXKS con-
ductance. We show this to be a consequence of the FSR.

The rest of the paper is organized as follows: in Sec. II we
briefly describe the two-level model, the method used for
calculating the conductance and the various approaches used
for the description of the electronic structure: GW, GWKS,
and XXKS. In Sec. III we present our numerical results,
which are discussed in Sec. IV in terms of the FSR and
time-dependent DFT �TDDFT�. Our conclusions are summa-
rized in Sec. V. The implications of the FSR for the accuracy
of KS-DFT in more general systems are discussed in the
Appendix.

II. GW AND KS-DFT CONDUCTANCES
OF A TWO-LEVEL MODEL

The two-level central region is described by the
Hamiltonian21

Hc = �
i,�

�in̂i,� + U�
i

n̂i,↑n̂i,↓ + UHL �
�,��

n̂H,�n̂L,��, �1�

where i denotes highest occupied molecular orbital/lowest
unoccupied molecular orbital �HOMO/LUMO� level indices
�i=H ,L�, � is a spin index ��= ↑ ,↓�, and n̂i,� is the number
operator for electrons with spin � in level i. The intralevel
electron-electron interaction explicitly excludes self-
interactions and its strength is controlled by the parameter U,
which we take to be the same for both levels. The strength of
the spin-independent interaction between electrons in differ-
ent levels is controlled by UHL, which is taken to be UHL
=U /2. At the particle-hole-symmetric point, there are on av-
erage two electrons in the central region and the single-
particle energies are given by �H=−� /2−U and �L=�+�H,
where � is an optical gap parameter.25

To compute the linear-response conductance of the model,
we use the NEGF approach and the Meir-Wingreen formula.4

The coupling to the noninteracting leads is described by a
wideband model self-energy �c which is characterized by a
coupling parameter � and which assumes that both levels
couple symmetrically to left and right leads. The weak-
coupling particle-hole-symmetric regime describes a
Coulomb-blockade scenario. Electron-electron interactions
are treated using a Hartree-XC �HXC� self-energy, �HXC,
which is evaluated using either the GW approximation,
�HXC��H+�GW, or KS-DFT, �HXC��H+vC, where vC is
the correlation part of the XC potential. Due to the absence
of self-interactions the XXKS HXC self-energy is just given
by �XXKS=�H. We evaluate �GWKS at the particle-hole-
symmetric point by writing the central-region KS
Hamiltonian26as

Hc
GWKS = �

i,�
��i + �i

H + �i
C�n̂i,�, �2�

where �H
C =−�L

C, and varying �H/L
C until the GWKS and GW

HOMO/LUMO occupancies, nH/L, agree within the desired
tolerance.27

The retarded many-body Green’s function is given by

Gr��� = ��� + i��I − h − �c
r − �HXC

r ����−1, �3�

where the superscript r indicates retarded quantities and h is
the noninteracting part of the Hamiltonian given in Eq. �1�.
We evaluate Gr self-consistently, ensuring that conservation
laws are satisfied.21–23 We consider the linear-response re-
gime where the lesser Green’s function is obtained by means
of the fluctuation-dissipation theorem.4 The linear-response
conductance is then given by G=G0T��F�, where G0
=2e2 /h and the Fermi energy of the leads is taken to be zero
��F=0�. For symmetric coupling to the leads, the transmis-
sion function, T���, is obtained directly from the equilibrium
central-region spectral function, A���=−Im Gr��� /	, as
T���=� Tr�A���	.

III. NUMERICAL RESULTS

For the numerical implementation we follow the prescrip-
tion of Thygesen and Rubio.23 In our calculations we fixed
�=4 and studied the dependence on � and U of the conduc-
tance and electron density as given by the GW, GWKS, and
XXKS approximations. Our numerical results are shown in
Fig. 1.

In the left panel of Fig. 1, we show the percentual differ-
ence between the GW and KS conductances �top�, and
HOMO occupancies/densities �nH, bottom� calculated as a
function of the coupling strength at the particle-hole-
symmetric point. The GW and GWKS conductances are in
excellent agreement for all the values of U and � considered
but are substantially larger than the XXKS conductance.
Similarly, the GW and GWKS HOMO densities are identical
by construction since the GWKS XC potential is optimized
to give the same level occupancies as the GW approxima-
tion, and they are smaller than their XXKS counterpart. Im-
portantly in the weak-coupling regime nH

XXKS and nH
GW are in

close agreement with each other, yet the conductance differ-
ence increases steeply as a function of � in that regime.
XXKS underestimates the conductance of the model and
overestimates the HOMO contribution to the density.

There are limits where all three conductances are ex-
pected to agree with each other; the uncoupled ��=0, G=0,
and nH=2� and very strongly coupled ��→
 ,G→2G0 ,nH
→1� and the noninteracting limit �U=0�. For ��0 the tail
from the HOMO �LUMO� resonance exits �enters� the Fermi
sea and we have nH�2, nL=2−nH, and 0�G�2G0. In our
model XXKS is exact to fist order in U since it exhausts all
first-order diagrams. Conductance deviations between GW
and XXKS start to be significant only for U�2. The maxi-
mum difference between GW and XXKS occupancies/
conductances arises for intermediate values of �. The devia-
tion between GW/GWKS and XXKS results illustrates the
importance of electronic correlations for U�2.
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In the central panel of Fig. 1, we show transmission func-
tions calculated for U=6 and two values of � representing
weak- �bottom� and intermediate- �top� coupling regimes.
We again see that T��=�F� is the same for the GW and
GWKS methods, despite differences in the spectral function
for energies other than Fermi energy. As a function of �,
there are two many-body effects in the spectral function that
are worth discussing. One is the reduction in the quasiparti-
cle gap as a function of �, which has been addressed by
Thygesen and Rubio.21 The other is the reduction in the GW
quasiparticle width with respect to the KS width, seen by
comparing top and bottom center panels in Fig. 1. Note that
in the KS schemes the resonance width is equal to � since,
for all frequencies, Im �HXC

KS =0.
We now discuss these trends in terms of the FSR �Refs.

17–19� which in our model relates the level occupancies,
nH/L, with the scattering phase shifts, 
H/L, for electrons scat-
tered by the central region. For such highly symmetric sys-
tems these phase shifts can in turn be related to the conduc-
tance. For the model considered the conductance at the
particle-hole symmetric can be shown to be given by

G/G0 = �
i=H,L

sin2�
i� , �4�

where the scattering phase shift associated with the HOMO/
LUMO channel is


H/L =
	nH/L

2
. �5�

At the particle-hole-symmetric point nH=2−nL and 
H=	
−
L. Thus the total conductance is just twice the HOMO
contribution to the conductance,28

G = 2G0 sin2�	nH/2� . �6�

Since the GWKS Hamiltonian is optimized to give nH
GW it

also gives the same Meir-Wingreen conductance as GW, de-

spite of their different spectral features. The same applies to
the exact self-energy �as opposed to GW� and exact KS �as
opposed to GWKS�, provided that a Fermi-liquid picture ap-
plies and that the interaction does not change the number of
scattering channels in the system.

In terms of the FSR we can understand the large deviation
between XXKS and GW conductances originating from
small deviations in nH, seen in the left panel of Fig. 1, for
small values of �. Consider a small error in the HOMO
density, 
nH, due to the use of an approximate functional.
The error in the conductance is 
G
=2	G0 sin�	nH /2�cos�	nH /2�
nH and the fractional error
in the conductance is


G/G =
	
nH

tan�	nH/2�
. �7�

Since tan�	nH /2�→ �0 as nH→2 small errors in the density
lead to comparatively large errors in the conductance, as can
be seen in the lower left panel of Fig. 1. Within our model
functionals that overestimate �underestimate� nH underesti-
mate �overestimate� the conductance. For approximately
charge-neutral molecular conductors, self-interaction errors
underestimate nH and thus, according to Eq. �7�, should over-
estimate the conductance by a very large factor.

To qualitatively address the narrowing of the quasiparticle
width with �, seen in the middle panel of Fig. 1, we consider
the weak-coupling limit and equate KS-DFT and GW con-
ductances using the GW and GWKS nH in Eq. �6�. This
yields19 �GW /�=Eg

GW /Eg
KS, where Eg and � are the HOMO-

LUMO gap and resonance width, respectively. The GW
width and gap are renormalized by the same amount with
respect to their GWKS counterparts. The GW width and gap
renormalization compensate each other to yield exactly the
same Meir-Wingreen conductance as GWKS DFT.

Finally, we consider the validity of the Friedel sum rule,
G=G0 sin2�	nH /2�+G0 sin2�	nL /2�, away from the
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FIG. 1. �Color online� LEFT: Percentual difference between the GW and XXKS/GWKS conductances �top� and HOMO occupancies
�bottom� as a function of the molecule-lead coupling strength for the values of U shown. CENTER: GW, GWKS, and XXKS transmission
functions T���=� Tr�A���	 for U=6 in the weak ��=1 /16; bottom� and intermediate ��=1; top� coupling regimes. RIGHT: Conductance
as a function of the gate voltage calculated using the Meir-Wingreen formula �dots� and the Friedel sum rule G=G0 sin2�	nH /2�
+G0 sin2�	nL /2� �lines� for the values of � shown. The optical gap parameter was set to �=4 in all the calculations. See the text for details.
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particle-hole-symmetric point, by varying the central-region
electron number using a gate voltage and computing the con-
ductance with both the FSR and the Meir-Wingreen formula.
In the right panel of Fig. 1 we plot the GW conductance as a
function of the gate voltage for U=4 and different values of
�. The Meir-Wingreen and FSR conductances are also in
good agreement away from the particle-hole-symmetric
point. Accordingly, the GWKS and GW conductances are
also close in these other regimes.

To summarize, we have shown an example of a system
where �KS� Hamiltonians that reproduce the interacting den-
sity also reproduce the interacting conductance. Another
such example, not shown here, is provided by the Anderson
model. For a discussion of the implications of the FSR for
the accuracy of the KS conductance in more general systems
see the Appendix.

IV. DISCUSSION

Next we discuss the limitations of the present study, sum-
marize the effects of approximations to KS-DFT, and explore
the relationships between the results obtained here and pre-
vious results within TDDFT.

Using the generalization of the FSR due to Langer and
Ambegaokar18 we show in the Appendix that, in systems
with one scattering channel, interactions beyond KS-DFT do
not introduce additional scattering at the Fermi energy and
thus do not change the conductance. Therefore, in highly
symmetric systems where a single-scattering channel domi-
nates over all others, exact KS-DFT should provide a good
description of the linear-response conductance.

We have illustrated this observation with a simple two-
level model of a molecular junction. The model considered
provides a simplified description of a molecular conductor
with obvious limitations: a minimal Hilbert space where qua-
siparticle and single-particle orbitals coincide; Coulomb in-
tegrals are restricted to being only of the direct two-center
kind; and a wideband model describing the coupling between
central region and left and right leads. Within this model the
FSR guarantees the accuracy of the exact KS-DFT Meir-
Wingreen conductance. When ��0 the central-region elec-
tronic levels are broadened and charge is transferred among
them �Friedel’s displaced charge17�. This charge transfer gov-
erns the scattering phase shift for electrons scattered by the
molecule and this phase shift can be related to the conduc-
tance, at least for highly symmetric systems such as the one
considered here.19

The comparison between XXKS and GW allows us to
study the effect of approximations to KS-DFT. In the weak-
coupling regime XXKS provides a good description of the
GW electronic density yet the error in the conductance
quickly builds up as a function of �. Exchange-only approxi-
mations underestimate the charge transfer between molecular
levels, overestimate the HOMO occupancy, and underesti-
mate the conductance. The XXKS and GW conductances
are, however, of the same order of magnitude for the values
of U considered. We have checked that allowing for self-
interactions in �H at the particle-hole-symmetric point re-
sults in a severe overestimation of the conductance, in good

agreement with Toher et al.15 and with the above-given dis-
cussion.

In recent unpublished work29 �see also Ref. 30 for related
ideas�, Bartlett, Fagas, and Greer arrive to similar conclu-
sions: they show that, in correlated systems, methods based
on the one-electron reduced density matrix yield the same
current-voltage characteristics as NEGF approaches as long
as both methods yield the same charge transfers. They also
arrive to the same conclusions regarding approximate density
functionals; functionals with self-interaction error overesti-
mate the conductance by overestimating the charge transfer
while exchange-only methods underestimate the charge
transfer and thus the conductance.

Our results are also in line with previous studies based on
TDDFT. According to Stefanucci and Almblahd31 the exact
current can be expressed in terms of a Landauer-type for-
mula in which the electrochemical potential of the leads is
shifted by the voltage-induced variation in the XC potential.
Thus exact static KS-DFT gives the exact linear-response
Meir-Wingreen conductance provided that the variation in
the XC potential vanishes deep inside the leads. The same
conclusion can be drawn using the Kubo formalism within
time-dependent current-density-functional theory.13 From
this perspective, in models where the interaction is confined
to the central region no static or dynamic XC contributions
are to be expected. The FSR supports these results for single-
channel molecular conductors �see the Appendix�; more
thought and calculations are needed to clarify this issue in
general systems.

V. CONCLUSIONS

In conclusion, based on the Friedel sum rule we have
argued that exact KS-DFT should provide a reasonable esti-
mate of the conductance of a molecular junction since KS-
DFT is able to reproduce the exact electron density of the
perturbed system �Friedel oscillations and displaced charge�.

We have illustrated these ideas by means of a two-level
model, where the noninteracting Hamiltonian that reproduces
the GW density yields also the GW conductance, despite
differences in the spectral function away from the Fermi en-
ergy. There the Friedel sum rule relates the conductance and
orbital charges. To reproduce the exact density KS-DFT
needs to reproduce these orbital charges exactly and by do-
ing so also reproduces the exact conductance.

We expect this result to apply approximately to effectively
single-channel molecular conductors, where conduction is
dominated by a single-scattering channel, such as the one
discussed in Ref. 19.

Small errors in the orbital charges associated with the use
of approximated functionals can result in comparatively
large errors in the conductance. The XXKS and GW conduc-
tances are of the same order of magnitude; larger errors do
arise when we allow for self-interactions in the calculations.

The results presented in this paper do not rule out the
possibility of corrections in general systems �see the Appen-
dix� but, together with the results of Schmitteckert and Evers
in Ref. 16, support the idea that a self-interaction-free ap-
proximation to KS-DFT can provide the correct order of
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magnitude for the conductance of a molecular junction.
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APPENDIX: FRIEDEL SUM RULE AND KOHN-SHAM
CONDUCTANCE

In this appendix we address the consequences of the FSR
for the accuracy of the KS conductance in general systems.
Consider as unperturbed system a molecular conductor de-
scribed within exact KS-DFT. Now in a certain finite region
of the system we allow for electronic interactions described
by means of many-body perturbation theory �MBPT�. The
perturbing potential will thus be �XC−vXC, where �XC is the
XC self-energy of MBPT and vXC is the XC potential of
KS-DFT. The perturbing potential is taken to be zero outside
the specified �central� region. Since KS-DFT reproduces the
electronic density of the system exactly such a perturbing
potential does not displace any charge and thus one expects it
to be a weak scatterer.

Langer and Ambegaokar18 use Luttinger’s theorem32 to
prove a generalization of the FSR to systems of interacting
electrons. This generalized FSR relates the displaced charge
N to the scattering matrix S��F� evaluated at the Fermi
energy and reads

N =
1

	i
ln det S��F� , �A1�

where spin degeneracy has been taken into account. This
relation is satisfied for Fermi-liquid systems where the
imaginary part of the exchange-correlation self-energy van-
ishes at the Fermi energy, i.e., Im �XC��F�=0. To see what
this means for the scattering phase shift associated with
�XC−vXC we introduce the total scattering phase shift, 
���,
in the usual way in scattering theory,

det S��� = exp�2i
���� �A2�

and take into account that, for the exact vXC, �XC−vXC does
not displace any charge and thus N=0. In this case Eq. �A1�
becomes


��F� = 0. �A3�

The condition that KS-DFT reproduces the exact density
strongly restricts the scattering by �XC−vXC. The total phase
shift contains contributions from different scattering chan-
nels, 
��F�=�i
i��F�, and therefore Eq. �A3� does not imply

i��F�=0, ∀i. Therefore in situations where many scattering
channels are involved the FSR does not guarantee the accu-
racy of KS-DFT for the calculation of the conductance.

In high-symmetry systems, however, the total scattering
phase shift may be dominated by a single-scattering channel
and in such a case �XC−vXC does not contribute to scattering
processes at the Fermi energy and therefore KS-DFT calcu-
lations should yield highly accurate conductances, provided
that an accurate XC potential is used in the calculation. The
two-level model considered in the text provides one such
example. Another example, not discussed here, is the
Anderson model.
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